The semiclassical continuity equation for open chaotic systems

نویسندگان

  • Jack Kuipers
  • Daniel Waltner
  • Martha Gutiérrez
  • Klaus Richter
چکیده

We consider the continuity equation for open chaotic quantum systems in the semiclassical limit. First we explicitly calculate a semiclassical expansion for the probability current density using an expression based on classical trajectories. The current density is related to the survival probability via the continuity equation, and we show that this relation is satisfied within the semiclassical approximation to all orders. For this we develop recursion relation arguments which connect the trajectory structures involved for the survival probability, which travel from one point in the bulk to another, to those structures involved for the current density, which travel from the bulk to the lead. The current density can also be linked, via another continuity equation, to a correlation function of the scattering matrix whose semiclassical approximation is expressed in terms of trajectories that start and end in the lead. We also show that this continuity equation holds to all orders. PACS numbers: 03.65.Sq, 05.45.Mt

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiclassical mechanism for the quantum decay in open chaotic systems.

We address the decay in open chaotic quantum systems and calculate semiclassical corrections to the classical exponential decay. We confirm random matrix predictions and, going beyond, calculate Ehrenfest time effects. To support our results we perform extensive numerical simulations. Within our approach we show that certain (previously unnoticed) pairs of interfering, correlated classical traj...

متن کامل

Semiclassics for chaotic systems with tunnel barriers

The addition of tunnel barriers to open chaotic systems, as well as representing more general physical systems, leads to much richer semiclassical dynamics. In particular, we present here a complete semiclassical treatment for these systems, in the regime where Ehrenfest time effects are negligible and for times shorter than the Heisenberg time. To start we explore the trajectory structures whi...

متن کامل

A semiclassical theory of quantum noise in open chaotic systems

We consider the quantum evolution of classically chaotic systems in contact with surroundings. Based on h̄-scaling of an equation for time evolution of the Wigner’s quasiprobability distribution function in presence of dissipation and thermal diffusion we derive a semiclassical equation for quantum fluctuations. This identifies an early regime of evolution dominated by fluctuations in the curvat...

متن کامل

The semiclassical regime of the chaotic quantum-classical transition.

An analysis of the semiclassical regime of the quantum-classical transition is given for open, bounded, one-dimensional chaotic dynamical systems. Environmental fluctuations-characteristic of all realistic dynamical systems-suppress the development of a fine structure in classical phase space and damp nonlocal contributions to the semiclassical Wigner function, which would otherwise invalidate ...

متن کامل

Investigation and Control of Unstable Chaotic Behavior Using of Chaos Theory in Two Electrical Power Systems: 1-Buck Converter2- Power Transformer

This paper consist of two sections: control and stabilizing approach for chaotic behaviour of converter is introduced in first section of this paper for the removal of harmonic caused by the chaotic behaviour in current converter. For this work, a Time- Delayed Feedback Controller (TDFC) control method for stability chaotic behaviour of buck converter for switching courses in current control mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009